腾讯混元新突破:浮点量化训练理论揭秘大模型训练效能极限

科技资讯2025-01-17 13:39:12
最佳答案腾讯混元团队近期发布了一项关于低比特浮点量化训练的重要研究,核心在于探索如何在不损失性能的前提下,通过降低模型精度来显著降低计算和...

腾讯混元团队近期发布了一项关于低比特浮点量化训练的重要研究,核心在于探索如何在不损失性能的前提下,通过降低模型精度来显著降低计算和存储成本。研究通过366组不同参数规模和精度的实验,系统分析了影响训练效果的多种因素,并得出了一套统一的规模法则。

研究指出,在任意低精度的浮点数量化训练中,存在性能最优的“极限效果”,且理论上最佳性价比的浮点数量化训练精度应在4到8比特之间。该研究填补了领域空白,为未来硬件制造商优化浮点运算能力提供了参考,也为大模型训练的实践提供了明确方向。

免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。